

The value of acceleration for a perfect ADXL202 is defined as
(the ratio of $\mathrm{Tl} / \mathrm{T} 2$ now) - 50% divided by the range of $\mathrm{Tl} / \mathrm{T} 2$ from 0 to 1 g
The 50% value is modified to be the true mean between T 1 max and T 1 min
i.e. $(\mathrm{T} 1 \mathrm{max}+\mathrm{T} 1 \mathrm{~min}) / 2$ divided by T 2

The range is (T1max - T1min)/2 divided by T2

$$
\begin{aligned}
& \text { Acceleration }=\frac{\frac{T 1 \text { now }}{T 2 \text { now }}-\left(\frac{T 1 \text { max now }+T 1 \mathrm{~min} n o w}{2 * T 2 \text { now }}\right)}{\frac{T 1 \text { maxnow }-T 1 \mathrm{~min} n o w}{2 * T 2 \text { now }}}- \\
& =\left(\frac{T 1 \text { now }}{T \text { now }}-\left(\frac{T 1 \text { max now }+ \text { T1min now }}{2 * T 2 \text { now }}\right)\right) *\left(\frac{2 * \text { T2now }}{\text { T1max now }- \text { T1min now }}\right)
\end{aligned}
$$

by calling ($T 1$ max $+T 1$ min $)$ a constant, ie K2
and (T1max-T1min) a constant, ie K3
the formula becomes

$$
\left(\frac{\text { T1now }}{T 2 \text { now }}-\frac{K 2}{2 * T 2 \text { now }}\right) *\left(\frac{2 * \text { T2now }}{K 3}\right)
$$

Multiplying through by

$$
\left(\frac{2 * T 2 \text { now }}{K 3}\right)
$$

gives

$$
\frac{2 * T 2 \text { now } * \text { T1now }}{K 3 * T 2 \text { now }}-\frac{K 2 * 2 * T 2 \text { now }}{K 3 * 2 * T 2 \text { now }}
$$

cancelling gives

$$
\frac{2 * \text { T1 now }}{K 3}-\frac{K 2}{K 3}
$$

which equals -

$$
\frac{(2 * T 1 \text { now }-K 2)}{K 3}
$$

This is only true at all temperatures if there are no temperature effects, but is always true if the constants are changed to reflect their true values at the appropriate temperature.

To take the changes into account, the values of T2, T1max and T1min were measured at two temperatures, as far apart as possible:
The values of K2 (T1max+T1min) and K3 (T1max-T1min) and T2 for both the X and Y channels, for each of the two temperatures(cold and hot) are stored in the PIC eeprom.

From these the corrected values of K2 and K3 at the current value of T2 are calculated as follows.

K 2 at current measured value of $\mathrm{T} 2_{\text {now }}$

$$
\begin{aligned}
& \mathrm{K} 2=\mathrm{K} 2 \text { cold }+(\mathrm{K} 2 \text { hot }-\mathrm{K} 2 \text { cold }) *(\mathrm{~T} 2 \text { now }-\mathrm{T} 2 \text { cold }) \\
& \text { (T2hot - T2cold) }
\end{aligned}
$$

K3 at current measured value of T 2 now

$$
\begin{aligned}
& \mathrm{K} 3=\mathrm{K} 3 \text { cold }+(\mathrm{K} 3 \text { hot }-\mathrm{K} 3 \text { cold }) *(\mathrm{~T} 2 \text { now }-\mathrm{T} 2 \text { cold }) \\
& \text { (T2hot - T2cold) }
\end{aligned}
$$

